欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品

撥號18861759551

你的位置:首頁 > 技術文章 > 調制傳遞函數簡介

技術文章

調制傳遞函數簡介

技術文章

Introduction to Modulation Transfer Function

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF). MTF is used for components as simple as a spherical singlet lens to those as complex as a multi-element ecentric imaging lens assembly. In order to understand the significance of MTF, consider some general principles and practical examples for defining MTF including its components, importance, and characterization.

 

THE COMPONENTS OF MTF

To properly define the modulation transfer function, it is necessary to first define two terms required to truly characterize image performance: resolution and contrast.

 

Resolution

Resolution is an imaging system's ability to distinguish object detail. It is often expressed in terms of line-pairs per millimeter (where a line-pair is a sequence of one black line and one white line). This measure of line-pairs per millimeter (lp/mm) is also known as frequency. The inverse of the frequency yields the spacing in millimeters between two resolved lines. Bar targets with a series of equally spaced, alternating white and black bars (i.e. a 1951 USAF target or a Ronchi ruling) are ideal for testing system performance. For a more detailed explanation of test targets, view Choosing the Correct Test Target. For all imaging optics, when imaging such a pattern, perfect line edges become blurred to a degree (Figure 1). High-resolution images are those which exhibit a large amount of detail as a result of minimal blurring. Conversely, low-resolution images lack fine detail.

Figure 1: Perfect Line Edges Before (Left) and After (Right) Passing through a Low Resolution Imaging Lens

 

A practical way of understanding line-pairs is to think of them as pixels on a camera sensor, where a single line-pair corresponds to two pixels (Figure 2). Two camera sensor pixels are needed for each line-pair of resolution: one pixel is dedicated to the red line and the other to the blank space between pixels. Using the aforementioned metaphor, image resolution of the camera can now be specified as equal to twice its pixel size.

Figure 2: Imaging Scenarios Where (a) the Line-Pair is NOT Resolved and (b) the Line-Pair is Resolved

 

Correspondingly, object resolution is calculated using the camera resolution and the primary magnification (PMAG) of the imaging lens (Equations 1 – 2). It is important to note that these equations assume the imaging lens contributes no resolution loss.

 

Contrast/Modulation

Consider normalizing the intensity of a bar target by assigning a maximum value to the white bars and zero value to the black bars. Plotting these values results in a square wave, from which the notion of contrast can be more easily seen (Figure 3). Mathematically, contrast is calculated with Equation 3:

Figure 3: Contrast Expressed as a Square Wave

 

When this same principle is applied to the imaging example in Figure 1, the intensity pattern before and after imaging can be seen (Figure 4). Contrast or modulation can then be defined as how faithfully the minimum and maximum intensity values are transferred from object plane to image plane.

 

To understand the relation between contrast and image quality, consider an imaging lens with the same resolution as the one in Figure 1 and Figure 4, but used to image an object with a greater line-pair frequency. Figure 5 illustrates that as the spatial frequency of the lines increases, the contrast of the image decreases. This effect is always present when working with imaging lenses of the same resolution. For the image to appear defined, black must be truly black and white truly white, with a minimal amount of grayscale between.

Figure 4: Contrast of a Bar Target and Its Image

Figure 5: Contrast Comparison at Object and Image Planes

 

In imaging applications, the imaging lens, camera sensor, and illumination play key roles in determining the resulting image contrast. The lens contrast is typically defined in terms of the percentage of the object contrast that is reproduced. The sensor's ability to reproduce contrast is usually specified in terms of decibels (dB) in analog cameras and bits in digital cameras.

 

UNDERSTANDING MTF

Now that the components of the modulation transfer function (MTF), resolution and contrast/modulation, are defined, consider MTF itself. The MTF of a lens, as the name implies, is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification. As line spacing decreases (i.e. the frequency increases) on the test target, it becomes increasingly difficult for the lens to efficiently transfer this decrease in contrast; as result, MTF decreases (Figure 6).

Figure 6: MTF for an Aberration-Free Lens with a Rectangular Aperture

 

For an aberration-free image with a circular pupil, MTF is given by Equation 4, where MTF is a function of spatial resolution (ξ), which refers to the smallest line-pair the system can resolve. The cut-off frequency (ξc) is given by Equation 6.

 

Figure 6 plots the MTF of an aberration-free image with a rectangular pupil. As can be expected, the MTF decreases as the spatial resolution increases. It is important to note that these cases are idealized and that no actual system is compley aberration-free.

THE IMPORTANCE OF MTF

In traditional system integration (and less crucial applications), the system's performance is roughly estimated using the principle of the weakest link. The principle of the weakest link proposes that a system's resolution is solely limited by the component with the lowest resolution. Although this approach is very useful for quick estimations, it is actually flawed because every component within the system contributes error to the image, yielding poorer image quality than the weakest link alone.

 

Every component within a system has an associated modulation transfer function (MTF) and, as a result, contributes to the overall MTF of the system. This includes the imaging lens, camera sensor, image capture boards, and video cables, for instance. The resulting MTF of the system is the product of all the MTF curves of its components (Figure 7). For instance, a 25mm fixed focal length lens and a 25mm double gauss lens can be compared by evaluating the resulting system performance of both lenses with a Sony monochrome camera. By analyzing the system MTF curve, it is straightforward to determine which combination will yield sufficient performance. In some metrology applications, for example, a certain amount of contrast is required for accurate image edge detection. If the minimum contrast needs to be 35% and the image resolution required is 30 lp/mm, then the 25mm double gauss lens is the best choice.

 

MTF is one of the best tools available to quantify the overall imaging performance of a system in terms of resolution and contrast. As a result, knowing the MTF curves of each imaging lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Figure 7: System MTF is the Product of the MTF of Individual Component: Lens MTF x Camera MTF = System MTF

 

CHARACTERIZATION OF MTF

Determining Real-World MTF

A theoretical modulation transfer function (MTF) curve can be generated from the optical prescription of any lens. Although this can be helpful, it does not indicate the actual, real-world performance of the lens after accounting for manufacturing tolerances. Manufacturing tolerances always introduce some performance loss to the original optical design since factors such as geometry and coating deviate slightly from an ideal lens or lens system. For this reason, in our manufacturing sites, Edmund Optics® invests in optical test and measurement equipment for quantifying MTF. This MTF test and measurement equipment allows for characterization of the actual performance of both designed lenses and commercial lenses (whose optical prescription is not available to the public). As a result, precise integration - previously limited to lenses with known prescriptions - can now include commercial lenses.

 

Reading MTF Graphs/Data

Reading Modulation Transfer Function Graphs/Data

A greater area under the MTF curve does not always indicate the optimal choice. A designer should decide based on the resolution of the application at hand. As previously discussed, an MTF graph plots the percentage of transferred contrast versus the frequency (cycles/mm) of the lines. A few things should be noted about the MTF curves offered by Edmund Optics®:

 

Each MTF curve is calculated for a single point in space. Typical field points include on-axis, 70% field, and full-field. 70% is a common reference point because it captures approximay 50% of the total imaging area.

Off-axis MTF data is calculated for both tangential and sagittal cases (denoted by T and S, respectively). Occasionally an average of the two is presented rather than the two individual curves.

MTF curves are dependent on several factors, such as system conjugates, wavebands, and f/#. An MTF curve is calculated at specified values of each; therefore, it is important to review these factors before determining whether a component will work for a certain application.

The spatial frequency is expressed in terms of cycles (or line-pairs) per millimeter. The inverse of this frequency yields the spacing of a line-pair (a cycle of one black bar and one white bar) in millimeters.

The nominal MTF curve is generated using the standard prescription information available in optical design programs. This prescription information can also be found on our global website, in our print catalogs, and in our lens catalogs supplied to Zemax®. The nominal MTF represents the best-case scenario and does not take into account manufacturing tolerances.

Conceptually, MTF can be difficult to grasp. Perhaps the easiest way to understand this notion of transferring contrast from object to image plane is by examining a real-world example. Figures 8 - 12 compare MTF curves and images for two 25mm fixed focal length imaging lenses: #54-855 Finite Conjugate Micro-Video Lens and #59-871 Compact Fixed Focal Length Lens. Figure 8 shows polychromatic diffraction MTF for these two lenses. Depending upon the testing conditions, both lenses can yield equivalent performance. In this particular example, both are trying to resolve group 2, elements 5 -6 (indicated by the red boxes in Figure 10) and group 3, elements 5 – 6 (indicated by the blue boxes in Figure 10) on a 1951 USAF resolution target (Figure 9). In terms of actual object size, group 3, elements 5 – 6 represent 6.35 – 7.13lp/mm (14.03 - 15.75μm) and group 3, elements 5 – 6 represent 12.70 – 14.25lp/mm (7.02 - 7.87μm). For an easy way to calculate resolution given element and group numbers, use our 1951 USAF Resolution EO Tech Tool.

 

Under the same testing parameters, it is clear to see that #59-871 (with a better MTF curve) yields better imaging performance compared to #54-855 (Figures 11 – 12). In this real-world example with these particular 1951 USAF elements, a higher modulation value at higher spatial frequencies corresponds to a clearer image; however, this is not always the case. Some lenses are designed to be able to very accuray resolve lower spatial frequencies, and have a very low cut-off frequency (i.e. they cannot resolve higher spatial frequencies). Had the target been group -1, elements 5-6, the two lenses would have produced much more similar images given their modulation values at lower frequencies.

Figure 8: Comparison of Polychromatic Diffraction MTF for #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right)

Figure 9: 1951 USAF Resolution Target

 

Figure 10: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 (Red Boxes) and Group 3, Elements 5 – 6 (Blue Boxes) on a 1951 USAF Resolution Target

 

Figure 11: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 on a 1951 USAF Resolution Target

 

Figure 12: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 3, Elements 5 – 6 on a 1951 USAF Resolution Target

 

Modulation transfer function (MTF) is one of the most important parameters by which image quality is measured. Optical designers and engineers frequently refer to MTF data, especially in applications where success or failure is contingent on how accuray a particular object is imaged. To truly grasp MTF, it is necessary to first understand the ideas of resolution and contrast, as well as how an object's image is transferred from object to image plane. While initially daunting, understanding and eventually interpreting MTF data is a very powerful tool for any optical designer. With knowledge and experience, MTF can make selecting the appropriate lens a far easier endeavor - despite the multitude of offerings.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品
在线观看久久av| 亚洲成人国产精品| 国产精品自产拍在线观| 91精品成人久久| 丝袜情趣国产精品| 97成人超碰免| 国产欧美日韩精品丝袜高跟鞋| 九九热在线精品视频| 国产精品电影一区| 日韩精品视频在线观看免费| 色yeye香蕉凹凸一区二区av| 亚洲一区二区三区视频| 国产精品久久久久久久久免费看| 国产精品久久久久久久久久小说| 国产中文字幕91| 亚洲性xxxx| 91免费福利视频| 欧美成人激情视频免费观看| 亚洲国产三级网| 欧美国产在线电影| 亚洲白拍色综合图区| 欧美日本在线视频中文字字幕| 午夜精品视频在线| 97在线精品视频| 日韩电影中文字幕在线| 亚洲第一区第一页| 亚洲社区在线观看| 国产日本欧美一区二区三区| 久久夜色精品亚洲噜噜国产mv| 中文字幕欧美专区| 精品国偷自产在线| xvideos亚洲人网站| 亚洲国产福利在线| 成人97在线观看视频| 亚洲第一级黄色片| 久久久精品视频在线观看| 国产中文日韩欧美| 日韩电影免费观看在线| 成人精品久久av网站| 成人性生交大片免费看视频直播| 国产成人自拍视频在线观看| 欧美视频裸体精品| www.日韩系列| 久久免费少妇高潮久久精品99| 91精品国产99久久久久久| 欧美老女人xx| 亚洲国产精品视频在线观看| 成人a免费视频| 国产精品爱久久久久久久| 88国产精品欧美一区二区三区| 久久久亚洲精选| 亚洲第一免费网站| 亚洲成人av在线播放| 欧美xxxx14xxxxx性爽| 日韩av免费在线看| 国产精品一二三视频| 亚洲国产成人久久综合| 成人信息集中地欧美| 欧美激情欧美激情在线五月| 精品亚洲一区二区三区在线观看| 亚洲欧美激情另类校园| 欧美高清视频在线播放| 日本高清不卡的在线| 国产精品96久久久久久| 日韩av成人在线观看| 欧美国产精品人人做人人爱| 亚洲偷熟乱区亚洲香蕉av| 8x拔播拔播x8国产精品| 亚洲女人天堂成人av在线| 日韩av在线影院| 亚洲视频在线观看网站| 亚洲精品第一页| 深夜福利亚洲导航| 国产免费一区二区三区香蕉精| 97在线观看视频国产| 久久婷婷国产麻豆91天堂| 国产亚洲精品久久久久久777| 日韩在线观看精品| 国产成+人+综合+亚洲欧美丁香花| 国产精品99一区| 亚洲激情视频在线播放| 91九色精品视频| 久久久久久久久久国产精品| 久久视频中文字幕| 欧美日韩成人网| 日韩高清a**址| 国产精品久久久久久久久久免费| 亚洲jizzjizz日本少妇| 亚洲毛片在线看| 超碰97人人做人人爱少妇| 久久免费视频网站| 亚洲国产私拍精品国模在线观看| 色先锋久久影院av| 97在线视频观看| 国产在线视频不卡| 亚洲综合第一页| 美女精品视频一区| 清纯唯美亚洲综合| 精品福利免费观看| 日本久久亚洲电影| 日韩在线观看网站| 国产一区玩具在线观看| 亚洲人成电影网站色…| 国产精品久久久亚洲| 尤物精品国产第一福利三区| 亚洲精品美女网站| 日韩欧美国产一区二区| 成人激情视频免费在线| 国产丝袜精品视频| 91午夜在线播放| 亚洲最大福利网| 国产女人18毛片水18精品| 亚洲va码欧洲m码| 日韩在线视频一区| 26uuu亚洲伊人春色| 亚洲欧美国产精品va在线观看| 亚洲最新av网址| 91亚洲精品一区二区| 欧美激情亚洲综合一区| 欧美成人亚洲成人日韩成人| 国产精品网址在线| 91久久夜色精品国产网站| 日韩视频第一页| 国产精品日韩av| 欧美中文在线观看| 国产综合久久久久久| 日韩欧美在线视频免费观看| 亚洲人成在线一二| 97在线看免费观看视频在线观看| 美日韩精品免费观看视频| 亚洲欧美国产制服动漫| 国产精品一区久久| 亚洲国产精品大全| 精品美女久久久久久免费| 亚洲国产精品成人精品| 国产男女猛烈无遮挡91| 欧美激情精品久久久久久久变态| 国产97在线播放| 亚洲国内精品视频| 91夜夜揉人人捏人人添红杏| 懂色aⅴ精品一区二区三区蜜月| 亚洲精品日韩丝袜精品| 亚洲xxxx在线| 伊人伊成久久人综合网站| 亚洲日本成人女熟在线观看| 久久天天躁狠狠躁夜夜爽蜜月| 日韩小视频在线| 亚洲在线免费看| 青青草原成人在线视频| 久久噜噜噜精品国产亚洲综合| 国产精品久久久久aaaa九色| 欧美插天视频在线播放| 亚洲精品一区在线观看香蕉| 色悠悠国产精品| 欧美激情视频一区| 色小说视频一区| 菠萝蜜影院一区二区免费| 青青精品视频播放| 成人午夜一级二级三级| 日韩av在线天堂网| 亚洲精品日韩激情在线电影| 日韩中文字幕第一页| 欧美精品激情blacked18| 国产亚洲激情视频在线|