欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品

撥號18861759551

你的位置:首頁 > 技術文章 > Laser Damage Threshold Testing

技術文章

Laser Damage Threshold Testing

技術文章

Laser Damage Threshold Testing

Laser Damage Threshold (LDT), also known as Laser Induced Damage Threshold (LIDT), is one of the most important specifications to consider when integrating an optical component such as a mirror into a laser system. Using a laser in an application offers a variety of benefits to a standard light source, including monochromaticity, directionality, and coherence. Laser beams often contain high energies and are capable of damaging sensitive optical components. When integrating a laser and optical components into a system, it is crucial to understand the effects of laser beams on optical surfaces and how laser damage threshold is quantified for optical components.

 

The type of damage induced to an optical component by a laser beam is dependent on the wavelength, pulse length, polarization, rep rate, and spatial characteristics among other factors. During exposure to a continuous wave (CW) laser, failure can occur due to laser energy absorption and thermal damage or melting of the substrate material or the optical coating. The damage caused by a short nanosecond laser pulses is typically due to dielectric breakdown of the material that results from exposure to the high electric fields in the laser beam. For pulse widths in between these two regimes or for high rep rate laser systems, laser induced damage may result from a combination of thermally induced damage and breakdown. For ultrashort pulses, about 10ps or less, nonlinear mechanisms such as multiphoton absorption and multiphoton ionization become important.

 

Testing Laser Damage Threshold

Laser-Induced Damage Threshold (LIDT) testing is a good method for quantifying the amount of electromagnetic radiation an optical component can withstand. There are a variety of different LDT tests. For example, Edmund Optics follows the ISO-11254 procedures and methods, which is the industry standard for determining the laser damage threshold of an optical component. Utilizing the ISO-11254 standard enables the fair comparison between optical components from different manufacturers.

 

Edmund Optics' LDT testing is conducted by irradiating a number of test sites with a laser beam at different energy densities for pulsed lasers, or different power densities for CW lasers. The energy density or power density is incrementally increased at a minimum of ten sites at each increment. The process is repeated until damage is observed in of the irradiated sites. The LDT is the highest energy or power level at which no damage is observed in any of the irradiated sites. Inspection of the sites is done with a Nomarsky-type Differential Interference Contrast (DIC) microscope with 100X - 150X magnification. Visible damage is observed and the results are recorded using pass/fail criteria. Figure 1 is a typical damage probability plot of exposure sites as a function of laser pulse energy.

Figure 1: Exposure Histogram of Laser Damage Threshold Probability versus Exposure Site

 

In addition to uncoated optical components, optical coatings are also subject to damage from the presence of absorption sites and plasma burn. Figure 2 is a real-world image of coating failure due to a coating defect. For additional information on the importance of LDT testing on coatings, view The Complexities of High-Power Optical Coatings.

Figure 2: Coating Failure from 73.3 J/cm2 Source due to Coating Defect

 

Defining Laser Damage Threshold

There are many variables that affect the Laser Damage Threshold (LDT) of an optical component. These variables can be separated into three categories: laser, substrate, and optical coating (Table 1).

Variables that Affect LDT/LIDT

Laser

Substrate

Coating

Output Power

Material

Deposited Material

Pulse duration

Surface Quality

Deposition Process

Pulse Repetition Rate

Cleanliness

Pre-Coating Preparation and Cleaning

Beam Profile

Reactivity to the Environment

Lot-to-Lot Control

Beam Diameter (1/e2)

Material Absorption

Coating Design and Optimization

Wavelength

Material Homogeneity

Protective Layers

LDT is typically quantified by power or energy densities for CW and pulsed lasers, respectively. Power density is the power per cross-sectional beam area of the laser beam (typically W/cm2). Similarly, energy density is the energy per cross-sectional beam area of a specific pulse duration (typically given in J/cm2). Lasers are available with a multitude of different wavelengths and pulse durations, therefore, it is useful to be able to scale LDT data to help determine if an optical component is suitable for use with a given laser. As a general rule of thumb, the following equation can be used to roughly estimate LDT from given data, LDT(λ1,τ1), LDT(λ2,τ2). This approximation only holds when scaling over relatively small wavelength or timescale ranges, and can not be used to extrapolate e.g. from ns to fs pulses, or from UV to IR.

In this equation τ1 is the laser pulse length and λ1 is the laser wavelength for the given LDT and τ2 is the laser pulse length and λ2 is the laser wavelength with unknown LDT. For example, the LDT for a mirror is 20 J/cm2 at 1064nm @ 20 ns. The LDT using the scaling rule above at 532nm and 10 ns pulse is 20 x (532/1064) x (10/20)½ or about 7 J/cm2. For longer pulses and high rep rate pulsed lasers it is also necessary to check the CW power density limit as well. The scaling equation is not applicable to ultra-short ps to fs pulsed lasers. When using “scaling” rules, safety factors of at least two times the calculated values should be applied to help ensure optical elements will not be damaged.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品
亚洲sss综合天堂久久| 操日韩av在线电影| 欧美在线视频观看| 福利一区福利二区微拍刺激| 欧美另类69精品久久久久9999| 欧美在线国产精品| 国产精品欧美激情在线播放| 国产精品久久不能| 久久国产精品久久国产精品| 欧美大片大片在线播放| 国产日韩欧美在线观看| 中文一区二区视频| 亚洲第一av网站| 国产精品久久久久久久9999| 91精品视频免费看| 一区二区三区四区精品| 久久不射热爱视频精品| 91欧美精品成人综合在线观看| 欧美激情视频一区| 全亚洲最色的网站在线观看| 国产精品久久久久久久久久东京| www.日韩欧美| 伊人伊人伊人久久| 久久久久久久一| 欧美一区二区三区图| 久久久国产影院| 久久精品国产亚洲精品2020| 日韩av理论片| 国产精品久久久久久久久借妻| 亚洲最大的网站| 国产精品久久久久久久久久| 日韩毛片在线观看| 欧美肥婆姓交大片| 国产精品69精品一区二区三区| 国产日本欧美一区二区三区| 91久久久亚洲精品| 亚洲精品suv精品一区二区| 国产精品夜色7777狼人| 色婷婷av一区二区三区在线观看| 国产欧美最新羞羞视频在线观看| 欧美激情一级欧美精品| 欧美大片在线免费观看| 亚洲国产91精品在线观看| 国产日韩一区在线| 久久久久久国产精品| 在线视频日本亚洲性| 亚洲一区亚洲二区| 精品视频www| 日韩av网址在线| 国产精品久久久av| 亚洲第一黄色网| 91av视频在线观看| 中文字幕一精品亚洲无线一区| 国产精品久久久久久五月尺| 欧美性猛交xxxx黑人| 亚洲国产精品悠悠久久琪琪| 尤物99国产成人精品视频| 国产成人自拍视频在线观看| 2018中文字幕一区二区三区| 国产mv久久久| 日韩精品在线观看网站| 欧美大成色www永久网站婷| 亚洲男人天堂古典| 国产精品福利在线| 亚洲视频电影图片偷拍一区| 日韩精品在线免费观看视频| 91高潮精品免费porn| 欧美成年人视频网站欧美| 精品视频久久久久久久| 68精品国产免费久久久久久婷婷| 国产精品福利在线观看网址| 92福利视频午夜1000合集在线观看| 伦理中文字幕亚洲| 久久九九热免费视频| 91九色单男在线观看| 超碰精品一区二区三区乱码| 日本久久久久久久久| 国产日韩在线看片| 久久久久久97| 亚洲人午夜色婷婷| 久久久久国产精品免费| 51精品国产黑色丝袜高跟鞋| 精品久久久久久中文字幕| 亚洲免费一级电影| 性欧美亚洲xxxx乳在线观看| 亚洲理论片在线观看| 一区二区国产精品视频| 亚洲国产99精品国自产| 日韩久久精品成人| 亚洲白虎美女被爆操| 欧美精品亚州精品| 亚洲精品小视频在线观看| 色999日韩欧美国产| 欧美亚洲国产视频小说| 亚洲资源在线看| 欧美精品国产精品日韩精品| 国产精品久久av| 亚洲欧美日韩一区二区三区在线| 欧美激情在线观看视频| 久久天天躁狠狠躁夜夜躁| 在线视频精品一| 久久av资源网站| 精品国内自产拍在线观看| 亚洲国模精品一区| 欧美极品欧美精品欧美视频| 91影院在线免费观看视频| 欧美成人中文字幕在线| 中文字幕亚洲欧美日韩高清| 久久久久国色av免费观看性色| www.亚洲一二| 久久久久中文字幕2018| 国产精品91视频| 色综合天天综合网国产成人网| 欧美老女人性视频| 色综合久久天天综线观看| 在线播放精品一区二区三区| 亚洲精品一区在线观看香蕉| 欧美日韩精品二区| 91国产精品91| 日韩精品一二三四区| 国产一区二中文字幕在线看| 亚洲伊人久久综合| 亚洲精品999| 久久成人在线视频| 国产精品自拍网| 亚洲激情国产精品| 综合久久五月天| 亚洲精品www| 欧美电影免费观看大全| 亚洲偷熟乱区亚洲香蕉av| 久热爱精品视频线路一| 亚洲欧美中文在线视频| 国产精品成人av在线| 国产午夜精品美女视频明星a级| 亚洲午夜未满十八勿入免费观看全集| 欧美专区在线观看| 欧美精品在线看| 超碰97人人做人人爱少妇| 视频在线观看99| 亚洲第一区第二区| 国产精品www| 91免费观看网站| 啪一啪鲁一鲁2019在线视频| 国产精品成人久久久久| 国产精品亚洲网站| 欧美成人剧情片在线观看| 国产精品入口日韩视频大尺度| 欧美日韩亚洲系列| 亚洲午夜精品久久久久久性色| 欧美电影免费在线观看| 久99九色视频在线观看| 国产午夜精品全部视频在线播放| 亚洲人成绝费网站色www| 这里只有精品丝袜| 日av在线播放中文不卡| 国产精品永久免费视频| 亚洲日本中文字幕| 日韩精品免费在线| 日韩中文字幕视频在线| 日韩国产激情在线| 日韩hd视频在线观看| 夜夜嗨av色一区二区不卡| 国产自产女人91一区在线观看| 国产激情999|