欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品

撥號18861759551

你的位置:首頁 > 技術文章 > 紅外(IR)應用的正確材料

技術文章

紅外(IR)應用的正確材料

技術文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品
亚洲福利视频二区| 久久人人爽人人爽人人片av高清| 久久久久久香蕉网| 国产精品9999| 久久精品青青大伊人av| 成人有码视频在线播放| 精品magnet| 久久精品电影网| 91在线中文字幕| 国产亚洲日本欧美韩国| 78m国产成人精品视频| 黑人与娇小精品av专区| 69视频在线播放| 欧美性xxxx极品hd满灌| 国产精品视频999| 久久中国妇女中文字幕| 亚洲欧美国产精品va在线观看| 精品成人av一区| 国产亚洲日本欧美韩国| 欧美风情在线观看| 中文字幕亚洲欧美日韩在线不卡| 日韩一区视频在线| 日韩av影视综合网| 国产精品嫩草影院久久久| 日韩成人av在线播放| 国产精品日韩欧美综合| 国产精品嫩草影院久久久| 欧美激情一二区| 久久精品国产亚洲一区二区| 久久久久久久色| 国产精品丝袜一区二区三区| 91av视频在线观看| 欧美性xxxxx| 国产精品88a∨| 欧美精品生活片| 亚洲一区二区福利| 久久亚洲综合国产精品99麻豆精品福利| 亚洲国产毛片完整版| 亚洲午夜色婷婷在线| 日本精品性网站在线观看| 国产成人aa精品一区在线播放| 久久精品一偷一偷国产| 91久久久久久久久久| 欧美激情精品久久久久久黑人| 亚洲精品免费在线视频| 91精品久久久久久久久久| 夜色77av精品影院| 91久久夜色精品国产网站| 精品少妇一区二区30p| 亚洲韩国欧洲国产日产av| 在线视频日韩精品| 日韩精品亚洲视频| 成人网址在线观看| 日韩美女中文字幕| 日韩欧美中文免费| 国产精品免费观看在线| 国产日韩欧美在线看| 亚洲网在线观看| 国产精品成人av性教育| 中文字幕在线看视频国产欧美在线看完整| xxxx欧美18另类的高清| 亚洲欧洲xxxx| 国产综合在线视频| 成人国产精品色哟哟| 成人啪啪免费看| 国产大片精品免费永久看nba| 亚洲伊人一本大道中文字幕| 欧美午夜精品久久久久久人妖| 欧美激情综合色综合啪啪五月| 精品国偷自产在线视频| 国产91在线视频| 国产成人精品电影| 一区二区三区 在线观看视| 欧美成人免费全部观看天天性色| 91精品免费久久久久久久久| xvideos亚洲| 欧美日韩在线另类| 国产一区二区美女视频| 日韩美女免费视频| 国产精品人人做人人爽| 国产精品色悠悠| 欧美老女人在线视频| 在线国产精品播放| www.国产精品一二区| 国产成人亚洲综合| 日韩av中文字幕在线免费观看| 欧美日韩成人在线播放| 91在线观看免费网站| 国产精品99久久久久久久久久久久| 日韩av黄色在线观看| www亚洲欧美| 91av网站在线播放| 亚洲欧美国内爽妇网| 九九热这里只有在线精品视| 亚洲伊人久久大香线蕉av| 亚洲第一区在线观看| 性色av一区二区三区免费| 日本午夜人人精品| 日本不卡免费高清视频| 91亚洲永久免费精品| 亚洲精品美女在线观看播放| 国产亚洲精品综合一区91| 精品人伦一区二区三区蜜桃免费| 美日韩精品免费观看视频| 亚洲色图综合久久| 国产精品无码专区在线观看| 成人欧美一区二区三区在线| 欧美一级片久久久久久久| 国产亚洲在线播放| 成人精品视频99在线观看免费| 欧美日本啪啪无遮挡网站| 亚洲裸体xxxx| 欧美极品美女视频网站在线观看免费| 国产亚洲一区精品| 欧美激情免费在线| 97视频在线观看成人| 久久精品在线视频| 国产视频欧美视频| 国产美女精品免费电影| 亚洲欧美日韩精品久久| 91视频免费在线| 78m国产成人精品视频| 亚洲色图色老头| 亚洲精品免费一区二区三区| 成人欧美在线视频| 97在线免费观看视频| 欧美激情欧美激情在线五月| 亚洲国产精久久久久久| 欧美国产日韩xxxxx| 国产成人在线一区| 成人深夜直播免费观看| 日本中文字幕成人| 久久成人人人人精品欧| 夜夜嗨av一区二区三区四区| 在线视频欧美日韩| 青青青国产精品一区二区| 91精品久久久久久久久青青| 中文字幕久热精品视频在线| 亚洲一区二区三区sesese| 亚洲免费精彩视频| 精品欧美激情精品一区| 亚洲国产另类久久精品| 亚洲视频专区在线| 高清日韩电视剧大全免费播放在线观看| 亚洲a一级视频| 欧美激情国内偷拍| 日韩av电影手机在线| 日韩精品一二三四区| 欧美性xxxxhd| 久久综合伊人77777| 中文字幕精品www乱入免费视频| 亚洲国产精品成人一区二区| 97国产精品视频人人做人人爱| 国产精品香蕉在线观看| 韩剧1988免费观看全集| 一本色道久久88综合亚洲精品ⅰ| www.久久撸.com| 亚洲开心激情网| 日韩av网址在线观看| 福利视频第一区| 大伊人狠狠躁夜夜躁av一区| 久久夜色精品亚洲噜噜国产mv| 青草青草久热精品视频在线网站| 91啪国产在线|