欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品

撥號18861759551

你的位置:首頁 > 技術文章 > 紅外(IR)應用的正確材料

技術文章

紅外(IR)應用的正確材料

技術文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品
日韩毛片在线观看| 欧洲精品毛片网站| 亚洲日韩中文字幕| 久久香蕉国产线看观看av| 欧美人与性动交| 中日韩美女免费视频网址在线观看| 亚洲国产97在线精品一区| 国内伊人久久久久久网站视频| 国产精品xxx视频| 按摩亚洲人久久| 国产一区二区三区高清在线观看| 欧美激情国产高清| 国产91精品不卡视频| 国产精品成久久久久三级| 国产一区二区av| 91精品国产91久久久久久久久| 91国语精品自产拍在线观看性色| 久久亚洲国产精品| 欧美日韩国产va另类| 91精品视频免费看| 亚洲最大激情中文字幕| 欧美成人免费视频| 91成人天堂久久成人| 国产suv精品一区二区三区88区| 日韩国产精品亚洲а∨天堂免| 欧美福利视频网站| 国产一区香蕉久久| 68精品国产免费久久久久久婷婷| 欧美国产一区二区三区| 国产成人亚洲精品| 亚州成人av在线| 欧美激情亚洲激情| 亚洲欧美激情一区| 亚洲免费中文字幕| 久久精品视频免费播放| 国产99久久精品一区二区 夜夜躁日日躁| 亚洲成色777777女色窝| 亚洲自拍高清视频网站| 亚洲一区二区三区四区在线播放| 日韩精品视频在线观看免费| 国产亚洲欧洲高清| 亚洲欧美在线x视频| 午夜精品久久久久久久99黑人| 色一情一乱一区二区| 欧美亚洲第一页| 欧美在线一级视频| 2019最新中文字幕| 欧美视频一区二区三区…| 日韩中文理论片| 国产成人欧美在线观看| 国产精品美女www| 日韩精品视频观看| 亚洲va欧美va国产综合剧情| 狠狠躁夜夜躁人人爽天天天天97| 国产精品人人做人人爽| 奇米4444一区二区三区| 亚洲成人黄色在线| 伊是香蕉大人久久| 久久99国产精品久久久久久久久| www.xxxx欧美| 欧美激情在线狂野欧美精品| 亚洲欧美在线免费| 国产情人节一区| 亚洲最大中文字幕| 都市激情亚洲色图| 欧美性感美女h网站在线观看免费| 欧美一区二区.| 亚洲精品99久久久久中文字幕| 国产精品久久久久国产a级| 国产乱肥老妇国产一区二| 欧美一区二区三区免费视| 成人国产在线激情| 久久久av一区| 91久久国产精品91久久性色| 国产99视频在线观看| 国产欧美久久久久久| 欧美激情成人在线视频| 久久久久久中文| 亚洲国产私拍精品国模在线观看| 久久久久久久影院| 欧美极品少妇与黑人| 伊人激情综合网| 成人妇女免费播放久久久| 97香蕉超级碰碰久久免费的优势| 国产精品美女久久| 亚洲一区二区三区四区在线播放| 中文字幕日韩精品在线观看| 欧美电影在线观看高清| 国产精品∨欧美精品v日韩精品| 高清欧美性猛交xxxx黑人猛交| 日韩av在线网站| 亚洲第一视频网| 九九综合九九综合| 国产在线观看91精品一区| 欧美日韩aaaa| 91日本在线视频| 免费97视频在线精品国自产拍| 精品magnet| 欧美成人精品一区二区三区| 2019中文字幕免费视频| 精品国产拍在线观看| 韩曰欧美视频免费观看| 一本色道久久综合狠狠躁篇的优点| 日韩中文在线不卡| 国产精品美女久久| 精品亚洲va在线va天堂资源站| 91在线色戒在线| 欧美做受高潮电影o| 亚洲欧洲激情在线| 永久免费毛片在线播放不卡| 欧美乱妇高清无乱码| 这里只有精品丝袜| 亚洲片在线观看| 91成人天堂久久成人| 91社区国产高清| 欧美激情中文字幕在线| 亚洲福利视频在线| 黑人精品xxx一区| 国产精品日韩在线播放| 久久久久久999| 九九精品视频在线| 成人h片在线播放免费网站| 97高清免费视频| www.亚洲男人天堂| 欧美一级片在线播放| 在线中文字幕日韩| 中文.日本.精品| 日韩在线视频国产| 久久视频在线免费观看| 久久久国产在线视频| 黄网站色欧美视频| 中文字幕日韩电影| 成人激情视频在线| 国产欧美亚洲视频| 亚洲а∨天堂久久精品9966| 欧美日韩国产成人在线观看| 国产午夜精品久久久| 久久久亚洲国产天美传媒修理工| 97国产精品视频人人做人人爱| 日韩国产欧美区| 久久精品国产久精国产一老狼| 国产成人精品久久二区二区| 精品香蕉在线观看视频一| 国产精品视频在线播放| 在线看福利67194| 国产精品av免费在线观看| 成人激情综合网| 成人免费看黄网站| 91精品在线一区| 亚洲国产精久久久久久久| 国产成人福利视频| 成人黄色片在线| 在线观看国产精品日韩av| 欧美精品videos另类日本| 久久99热精品| 全色精品综合影院| 国产精品美女久久久久av超清| 国产精品美腿一区在线看| 国产mv免费观看入口亚洲| 久久夜色精品亚洲噜噜国产mv| 国产91成人video| 欧美成人免费全部观看天天性色| 欧美成人免费全部观看天天性色| 日本aⅴ大伊香蕉精品视频|