欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品

撥號18861759551

你的位置:首頁 > 技術文章 > 機器視覺過濾

技術文章

機器視覺過濾

技術文章

Filtering in Machine Vision

There are many different types of filters in machine vision that can be utilized to improve or change the image of the object under inspection. It is important to understand the different technologies behind the various types of filters in order to understand their advantages and limitations. Although there is a wide variety of filters, almost all can be divided into two primary categories: colored glass filters and coated filters.

 

Colored Glass Filters

Colored glass filters are incredibly common in machine vision, and are created by doping glass materials with elements that selectively change their absorption and transmission spectra. The dopants vary based on which wavelengths are considered for transmission, and the manufacturing process is then nearly identical to standard optical glass manufacturing. Colored glass filters are advantageous for a couple different reasons: they are of relatively low cost when compared to interference filters and, more importantly, they do not demonstrate any shift in wavelength transmission when used with wide angle lenses or at an angle. However, colored glass filters also typically feature wide cut-on wavebands, do not have curves that are as sharp or accurate as coated interference filters, and do not have transmission throughput levels (percentages) as high as interference filters. Figure 1 shows the transmission curves for several common colored glass filters. Note that the filters feature wide cut-on wavebands and have relatively shallow slopes describing their transmission functions.

Figure 1: Transmission Curves for Several Different Colored Glass Filters

 

Infrared (IR) cutoff filters can be either colored glass filters or a type of coated filter that is useful for both monochrome and color cameras in machine vision applications. Since the silicon sensors in most machine vision cameras are responsive to wavelengths up to approximay 1μm, any IR light incident on the sensor that may have been caused by overhead fluorescent lights or other unwanted sources can create inaccuracies on the sensor. On a color camera, IR light will create a false color on the sensor that can degrade overall color reproduction. For this reason, many color imaging cameras come standard with IR-cut filter over the sensor. With monochrome cameras, the presence of IR light will degrade the contrast of the overall image.

There are a multitude of other types of colored glass filters. For instance, daylight blue filters can be used for color balancing when polychromatic light sources and color sensors are used.

 

Coated Interference Filters

Coated filters typically offer sharper cut on and cut off transitions, higher transmissions, and better blocking then colored glass filters. In addition to colored glass filters, there are a range of coated filters, they range from hard coated fluorescent filters to dichroic filters to polarization filters. Each coated filter undergoes a unique manufacturing process to ensure the proper performance. Wavelength-selective optical filters are manufactured by depositing dielectric layers on a specific substrate of alternating high and low indices of refraction. The surface quality and uniformity of the substrate establishes the baseline optical quality for the filter, along with setting wavelength limits where the transmission of the substrate material falls off. The dielectric layers produce the detailed spectral structure of a filter by creating constructive and destructive interference across a range of wavelengths, as well as providing much sharper cut-off and cut-on bands when compared to colored glass filters.

Many types of hard coated filters exist, such as bandpass, longpass, shortpass, and notch filters, each with a specified blocking range and transmission range. Longpass filters are designed to block short wavelengths and pass long wavelengths. Shortpass filters are the opposite, passing shorter wavelengths and blocking longer. Bandpass filters pass a band of wavelengths while blocking longer and shorter wavelengths. The inverse of a bandpass filter is a notch filter, which blocks a band of wavelengths and passes the longer and shorter. Transmission curve shapes for these filter types are shown in Figure 2.

Figure 2: Transmission Curve Examples of Longpass and Shortpass (a) and Bandpass and Notch Filters (b)

Filters designed for deep blocking (high Optical Density) and steep slopes (sharp transition from blocking to transmission) are used in applications where precise light control is critical. Most machine vision applications do not require this level of precision; typically, any filter with an Optical Density (OD) of 4 or greater is more precise than required and adds unnecessary cost.

Because hard coated filters utilize optical interference to achieve such precise transmission and rejection bands, they introduce some difficulties when used in machine vision applications. All interference filters are designed for a specific Angle of Incidence (AOI), generally 0° unless specifically defined otherwise. When used in machine vision, these filters are generally placed in front of the lens; doing such causes the filter to accept light coming from angles dictated by the angular field of view of the lens. Especially in the case of short focal length (large angular field of view) lenses, the light that is transmitted through the filter will often display an unwanted effect known as blue shift. For example, a 4.5mm focal length lens (wide angle) will have a much larger blue shift than a 50mm focal length lens (narrow angle). As the AOI on an interference filter increases, the optical path length through the filter layers increases, which causes the cut-on and cut-off wavelengths to decrease (Figure 3). Therefore, at different field points in the image, the filter will behave differently by transmitting different wavelength ranges: the farther out in the field, the more pronounced the blue shift. In most cases, interference filters can still provide better filtering control over a colored glass filter, but be aware of the potential pitfalls when using an interference filter with a wide-angle lens.

Figure 3a: Interference filters function based on the distance that light incident upon the filter travels. At the correct angle of incidence, the light waves incident on the filter destructively interfere, disallowing them from making it through the filter. At a different angle, the destructive interference is not as effective, effectively changing the type of filter.

 

Figure 3b: An Example of Blue Shift, shown with a Bandpass Filter used at a 15° Angle of Incidence. Note not only the shift towards a lower center wavelength, but the shallowing of the slope as well. The dashed curve is ideal, when the filter is used at a 0° angle of incidence.

 

Applications with Machine Vision Filtering

When designing a machine vision system, it is important to enhance the contrast of the inspected object’s features of interest. For an introduction to contrast, see our application note. Filtering provides a simple way to enhance the contrast of the image while blocking out unwanted illumination. There are many different ways filters can enhance contrast, and the filter type is dependent on the application. Some common filters used in machine vision are colored glass, interference, Neutral Density (ND), and polarization.

 

Colored glass bandpass filters are some of the simplest filters available for drastically improving image quality. These filters work incredibly well at narrowing the waveband that is visible by the vision system, and are often less expensive than comparable interference filters. Colored glass filters work best when used to block out colors on the opposite side of the color wheel (Figure 4).

Figure 4: Color Wheel Demonstrating that Warm Colors should be used to Filter out Cool Colors on the Opposite Side of the Wheel

 

Color Filters

Consider the example shown in Figure 5, where gel capsules are being inspected. As shown, two red capsules are on the outer sides of a pair of green capsules and under a white light backlight. This is a sorting application where the pills need to be separated by color to reach their respective locations. Imaging the capsules with a monochrome camera (Figure 6) provides a contrast between the green and red capsules of only 8.7%, which is below the minimum advisable contrast of 20%.

Figure 5: Four Liquid Capsules under Inspection with the same Vision System, shown here in Color

Figure 6: Capsules being viewed with a Monochromatic Camera, yielding a Contrast of 8.7%

 

In this particular example, minor fluctuations in ambient light, such as individuals walking past the system, can decrease the already low contrast value of 8.7% enough so that the system is no longer capable of operating properly. Several solutions to this problem exist: a bulky and costly light baffling system can be built to compley enclose the inspection system, the entire lighting scheme of the system can be reworked, or a filter can be added to enhance the contrast between the green and red pills. In this instance, the simplest and most cost effective solution is to utilize a green colored glass filter in order to improve the contrast between the two different colored capsules. As shown in Figure 7, the contrast improves from 8.7% to 86.5%: an increase of nearly a factor of 10.

Figure 7: Capsules being viewed with a Monochromatic Camera and Green Colored Glass Filter yielding a Contrast of 86.5%

 

Neutral Density Filters

Neutral density filters are used in certain applications where it is advantageous to have additional control over the brightness of an image without changing the exposure time or adjusting the f/#. Although there are two primary types of neutral density filters (absorbing and reflecting), their overall responsibility is the same: uniformly lower the light that is transmitted through the lens and onto the sensor. For applications like welding where the imager can be overloaded regardless of the exposure time, neutral density filters can provide the necessary drop in throughput without needing to change the f/# (which can impact the resolution of the system). Specialty neutral density filters, like apodizing filters, exist to help with hotspots in the center of an image caused by a harsh reflection from an object, but the optical density decreases with radial distance away from the center of the filter.

 

Polarizing Filters

Polarization filters are another common type of filter used in machine vision applications as they allow better imaging of specular objects. In order to properly use polarizing filters, it is important that both the light source and the lens have polarization filters on them. These filters are called the polarizer and the analyzer, respectively. Figure 8 shows an example of how polarization filters can make a difference when viewing specular objects. In the Figure 8a, a CCD imager is being inspected with brightfield illumination and Figure 8b shows the same illumination setup with a polarizer on the light source and an analyzer on the lens.

Figure 8: Images taken with no Filter (a) showing High Glare and with Polarization Filters (b) which Reduce Glare

 

As shown in Figure 8b, augmenting the system with polarizers provides superior performance as the harsh reflections are absorbed by the filter on the lens. To ensure the maximum extinction of unwanted glare, the polarizer on the light source must be aligned with its polarization axis 90° from the polarization axis of the polarizer on the lens, otherwise, the lens will still transmit some of the harshly reflected light into the system, causing glare.

 

It is critical to understand that filters exist to manipulate the contrast of an image in order to help increase the accuracy of the imaging system. Whether it is simple color filtering or polarization filtering, each filter exists to solve a unique problem; it is important to understand what filters should be used for specific applications.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
欧美成人午夜激情视频_亚洲视频第一页_日韩免费看的电影电视剧大全_欧美黄色片视频_欧美性色视频在线_亚洲第一福利视频_欧美亚洲激情视频_成人欧美在线视频_亚洲综合一区二区不卡_国产91精品久久久久久久_成人午夜两性视频_日韩欧美在线视频免费观看_久久人人爽人人_国产成人综合久久_国产精品久久久久9999_久久99热精品这里久久精品
日韩精品视频在线播放| 91视频国产一区| 亚洲在线观看视频| 久久精品成人一区二区三区| 欧洲美女免费图片一区| 97国产在线观看| 91精品国产一区| 亚洲社区在线观看| 97视频在线观看免费| 久久精品国产亚洲7777| 欧美日韩xxx| 久久久久久久亚洲精品| 亚洲欧美三级伦理| 久久精品国产久精国产一老狼| 2019中文字幕在线| 欧美激情在线狂野欧美精品| 成人免费视频在线观看超级碰| 亚洲性生活视频| 26uuu国产精品视频| 色av吧综合网| 亚洲女人天堂成人av在线| 成人网址在线观看| 亚洲在线视频福利| 26uuu日韩精品一区二区| 精品国内产的精品视频在线观看| 欧美性猛交99久久久久99按摩| 欧美精品videossex性护士| 久久全球大尺度高清视频| 国产热re99久久6国产精品| 欧美极品在线播放| 美女性感视频久久久| 亚洲欧美制服第一页| 国产一区二区久久精品| 亚洲激情第一页| 亚洲精品中文字幕有码专区| 久久国产精品久久久久| 日韩有码在线播放| 欧美激情精品在线| 高清一区二区三区四区五区| 欧美日韩电影在线观看| 91精品国产色综合| 久久免费精品日本久久中文字幕| 91sao在线观看国产| 色777狠狠综合秋免鲁丝| 在线观看亚洲视频| 亚洲片在线资源| 国产午夜精品全部视频在线播放| 亚洲第一黄色网| 91亚洲精品久久久久久久久久久久| 久久97精品久久久久久久不卡| 国产日韩换脸av一区在线观看| 日韩av在线免费观看| 国产精品久久久久高潮| 成人黄色免费在线观看| 国产精品久久91| 亚洲系列中文字幕| 欧美日韩在线免费观看| 国产色视频一区| 日韩精品在线免费观看视频| 视频一区视频二区国产精品| 亚洲国产成人精品一区二区| 欧美理论电影网| 欧美日韩人人澡狠狠躁视频| 91久久久久久久一区二区| 日韩在线不卡视频| 欧美最猛黑人xxxx黑人猛叫黄| 国产欧美精品久久久| 97免费在线视频| 亚洲天堂成人在线视频| 亚洲精品综合精品自拍| 超碰日本道色综合久久综合| 日韩成人在线网站| 中文字幕精品在线| 亚洲精品久久视频| 国产精品高潮呻吟久久av黑人| 91精品久久久久久久久久久| 国产一区二区成人| 久久久久久久久亚洲| 国产亚洲欧洲高清| 亚洲最大福利网| 日韩精品高清视频| 国产精品色悠悠| 久久精品视频免费播放| 国产精品∨欧美精品v日韩精品| 欧美极品xxxx| 亚洲精品电影在线| 黄色成人在线免费| 日韩av一区二区在线| 亚洲精品久久久久中文字幕二区| 亚洲乱码一区二区| 日韩在线视频观看| 国产欧美日韩高清| 国产精品免费一区豆花| 欧美视频13p| 亲爱的老师9免费观看全集电视剧| xvideos成人免费中文版| 国产精品欧美亚洲777777| 欧美区二区三区| 国产精品普通话| 欧美与黑人午夜性猛交久久久| 欧美影院在线播放| 欧美黑人国产人伦爽爽爽| 91免费看国产| 亚洲最大福利视频网站| 日韩电视剧免费观看网站| 日韩免费视频在线观看| 久久久国产精品免费| 日韩av在线播放资源| 国产成人欧美在线观看| 国产精品欧美日韩| 日韩在线观看免费av| 日韩精品在线影院| 日韩在线视频一区| 日韩av电影中文字幕| 欧美精品一区三区| 国产一区红桃视频| 亚洲精品动漫久久久久| 国产91精品久| 中文字幕亚洲无线码a| 国产精品美女www爽爽爽视频| 成人精品视频99在线观看免费| 成人精品在线视频| 欧美成人国产va精品日本一级| 欧美成人精品一区二区三区| 国产精品久久综合av爱欲tv| 国产成人啪精品视频免费网| 国产精品成熟老女人| 亚洲精品久久久久中文字幕二区| 91免费国产视频| 在线观看国产精品淫| 亚洲第一页中文字幕| 日韩中文字幕在线免费观看| 欧美成人一区二区三区电影| 有码中文亚洲精品| 国产一区二区三区在线免费观看| 亚洲精品福利在线观看| 欧美wwwxxxx| 午夜精品久久久久久99热软件| 亚洲色图日韩av| 国产精品电影网站| 欧美贵妇videos办公室| 日韩欧美国产网站| 欧美日韩午夜剧场| 欧美精品在线第一页| 国产精品视频1区| 精品少妇一区二区30p| 亚洲欧美精品一区| 性欧美办公室18xxxxhd| 国产精品久久久久久久久| 成人在线观看视频网站| 午夜精品三级视频福利| 综合国产在线观看| 日韩在线激情视频| 日韩中文理论片| 一区二区三区国产在线观看| 亚洲性夜色噜噜噜7777| 欧美日韩国产综合新一区| 国产欧美va欧美va香蕉在线| 国产99久久久欧美黑人| 一区二区三区国产视频| 国产精品视频区| 欧美亚洲在线播放| 5252色成人免费视频| 亚洲欧洲美洲在线综合|